જો ત્રિકોણની બાજુઓ $y = mx + a, y = nx + b$ અને $x = 0,$ હોય, તો તેનું ક્ષેત્રફળ :
$\frac{{1\,\,{{(a - b)}^2}}}{{2\,\,(m - n)}}$
$\frac{{1\,\,{{(a - b)}^2}}}{{2\,\,(m + n)}}$
$\frac{{1\,\,{{(a + b)}^2}}}{{2\,\,(m - n)}}$
એકપણ નહિ
ચોરસની એક બાજુએ $x-$ અક્ષની ઉપર આવેલ છે અને ચોરસનું એક શિરોબિંદુ ઊગમબિંદુ છે.જો ઊગમબિંદુમાંથી પસાર થતી બાજુએ ધન $x-$ અક્ષ સાથે બનાવેલ ખૂણો $\alpha \,\,(0\; < \;\alpha \; < \;\; \frac{\pi }{4}))$ તો ઊગમબિંદુમાંથી પસાર ન થતા વિર્કણનું સમીકરણ મેળવો. (ચોરચની બાજુની લંબાઈ $a$ છે )
રેખાઓ $x+2 y+7=0$ અને $2 x-y+8=0$ થી હંમેશા સમાન અંતરે રહે તે રીતે ગતિ કરતા બિંદુ $P$ નો બિંદુપથ $x^2-y^2+2 h x y+2 g x+2 f y+c=0$ છે. તો $g+c+h-f$ નું મૂલ્ય___________છે.
રેખાઓ $ax \pm by \pm c = 0$ થી બનતા સ.બા.ચનું ક્ષેત્રફળ મેળવો.
સમાંતરબાજુ ચતુષ્કોણની બે ક્રમિક બાજુઓ $4x + 5y = 0$ અને $7x + 2y = 0$ છે જો એક વિકર્ણનું સમીકરણ $11x + 7y = 9$ હોય તો બીજા વિકર્ણનું સમીકરણ મેળવો
જો $PQR$ એ સમદ્રીબાજુ કાટકોણ ત્રિકોણ છે કે જેમાં બિંદુ $P\, (2, 1)$ આગળ કાટખૂણો બને છે જો રેખા $QR$ નું સમીકરણ $2x + y = 3$, હોય તો રેખાઓ $PQ$ અને $PR$ ના સયુંકત સમીકરણ મેળવો