જો ઉપવલયની ગૌણ અક્ષ (તેની અક્ષોને અનુક્રમે $x$ અને $y$ ની અક્ષ તરીકે લેતા) ના અંત્યબિંદુનું નાભિ અંતર $k$ હોય અને તેની નાભિઓ વચ્ચેનું અંતર $2h$ હોય તો તેનું સમીકરણ :

  • A

    $\frac{{{x^2}}}{{{k^2}}}\,\, + \,\,\frac{{{y^2}}}{{{h^2}}}\,\, = \,\,1$

  • B

    $\frac{{{x^2}}}{{{k^2}}}\,\, + \,\,\frac{{{y^2}}}{{{k^2}\, - \,\,{h^2}}}\,\, = \,\,1$

  • C

    $\frac{{{x^2}}}{{{k^2}}}\,\, + \,\,\frac{{{y^2}}}{{{h^2}\, - \,{k^2}}}\,\, = \,\,1$

  • D

    $\frac{{{x^2}}}{{{k^2}}}\,\, + \,\,\frac{{{y^2}}}{{{k^2}\, + \,{h^2}}}\,\, = \,\,1$

Similar Questions

ઉપવલય $2x^2 + 5y^2 = 20$ ની સાપેક્ષે બિંદુ $(4, -3)$ નું સ્થાન :

ઉપવલય ${x^2} + 2{y^2} = 2$ ના બહારના બિંદુથી ઉપવલય પર દોરવામાં આવેલ સ્પર્શકોએ અક્ષો પર કપાયેલ અંત:ખંડના મધ્યબિંદુના બિંદુપથનું સમીકરણ મેળવો.           

  • [IIT 2004]

ઉપવલયની પ્રધાન અક્ષના અંત્યબિંદુ $A$ અને ગૌણ અક્ષના અંત્યબિંદુ $B$ માંથી પસાર થતી રેખા તેના સહાયક વૃતને બિંદુ $M$ આગળ સ્પર્શેં છે તો $A, M$ અને ઉગમ બિંદુ $O$ આગળ શિરોબિંદુવાળા ત્રિકોણનું ક્ષેત્રફળ-

જો ઉપવલય $\frac{{{{\text{x}}^{\text{2}}}}}{{{a^2}\,\, + \;\,1}}\,\, + \;\,\frac{{{y^2}}}{{{a^2}\,\, + \;\,2}}\,\, = \,\,1$ ની ઉત્કેન્દ્રીતા $\frac{1}{{\sqrt 6 }}, $ હોય, તો ઉપવલય નો  નાભિલંબની લંબાઈ મેળવો.

$12$ મી લંબાઈનો સળિયો એવી રીતે ખસે છે કે જેથી તેના અંત્યબિંદુઓ યામાક્ષો પર રહે. $x-$ અક્ષ પરના અંત્યબિંદુથી $3$ મી દૂર આવેલ સળિયા પરના બિંદુ $P$ નો બિંદુગણ શોધો.