ઉપવલય $x^2 + 4y^2 = 4$ એ યામાક્ષો સાથે જોડાયેલા લંબચોરસમાં આવેલું છે, તો ઉપવલયનું સમીકરણ મેળવો કે જે આપેલ લંબચોરચને સમાવે.
$4x^2 + 48y^2 = 48$
$4x^2 + 64y^2 = 48$
$x^2 + 16y^2 =16$
$x^2 + 12y^2 = 16$
આપેલ શરતોનું સમાધાન કરતા ઉપવલયનું સમીકરણ શોધોઃ કેન્દ્ર ઊગમબિંદુ, પ્રધાન અક્ષ $y$-અક્ષ પર હોય અને બિંદુઓ $(3, 2)$ અને $(1, 6)$ માંથી પસાર થાય.
$x = 2 (cos\, t + sin\, t), y = 5 (cos\, t - sin\, t) $ દ્વારા દર્શાવેલો શાંકવ .....
જો પરવલય $y^2 = x$ એ બિંદુ $\left( {\alpha ,\beta } \right)\,,\,\left( {\beta > 0} \right)$ અને ઉપવલય $x^2 + 2y^2 = 1$ આગળનો સ્પર્શક હોય તો $a$ =
ઉપવલય ${x^2} + 3{y^2} = 6$ ના સ્પર્શક પર આ ઉપવલયના કેન્દ્રમાંથી દોરેલા લંબપાદનો બિંદુપથ મેળવો.
$(3, 5)$ માંથી પસાર થતા ઉપવલય $3x^2 + 5y^2 = 32$ અને $25x^2 + 9y^2 = 450$ પર દોરી શકાય તેવા વાસ્તવિક સ્પર્શકોની સંખ્યા