$x = 2 (cos\, t + sin\, t), y = 5 (cos\, t - sin\, t) $ દ્વારા દર્શાવેલો શાંકવ .....
વર્તૂળ
પરવલય
ઉપવલય
અતિવલય
જેની ઉત્કેન્દ્રતા $e = \frac{1}{2}$ તથા એક નિયામિકા $x=4$ હોય તેવા ઊગમબિંદુ કેન્દ્ર હોય તેવા ઉપવલયનું સમીકરણ મેળવો.
આપેલ ઉપવલય માટે નાભિના યામ, શિરોબિંદુઓ તથા પ્રધાન અક્ષ તથા ગૌણ અક્ષની લંબાઈ, ઉત્કેન્દ્રતા અને નાભિલંબની લંબાઈ શોધોઃ
$4 x ^{2}+9 y ^{2}=36$
આપેલ ઉપવલય માટે નાભિના યામ, શિરોબિંદુઓ તથા પ્રધાન અક્ષ તથા ગૌણ અક્ષની લંબાઈ, ઉત્કેન્દ્રતા અને નાભિલંબની લંબાઈ શોધોઃ
$\frac{x^{2}}{25}+\frac{y^{2}}{100}=1$
${\text{P}}$ એ ઉપવલય $\frac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}\,\, + \,\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1\,\,$ પરનું બિંદુ છે. જ્યારે $\Delta PSS'\,$ નું ક્ષેત્રફળ મહતમ હોય,ત્યારે $\Delta PSS'$ ($S$ અને $S'$ નાભિઓ) ની અંત: ત્રિજ્યા =.........
ઉપવલય $\frac{\mathrm{x}^2}{\mathrm{a}^2}+\frac{\mathrm{y}^2}{\mathrm{~b}^2}=1, \mathrm{a}>\mathrm{b}$ ની નાભિ અને નાભિલંબની લંબાઈ અનુક્રમે $( \pm 5,0)$ અને $\sqrt{50}$ છે, તો અતિવલય $\frac{x^2}{a^2}-\frac{y^2}{a^2 b^2}=1$ ની ઉત્કેન્દ્રતાનો વર્ગ.........................