બે વર્તૂળો $2x^{2} + 2y^{2} + 7x - 5y + 2 = 0$ અને $x^{2}+ y^{2} - 4x + 8y - 18 = 0 $ ની સામાન્ય જીવાની લંબાઇ.....
$\,2\,\,\sqrt {\frac{{1102}}{{333}}} $
$\frac{{152}}{{\sqrt {666} }}$
$\,2\,\,\sqrt {\frac{{152}}{{333}}} $
$\,2\,\,\sqrt {\frac{{152}}{{666}}} $
વર્તૂળો $x^2 + y^2 - 8x - 2y + 1 = 0$ અને $x^2 + y^2 + 6x + y = 0$ ના સામાન્ય સ્પર્શકોની સંખ્યા :
વર્તૂળ $x^2 + y^2 = 4$ નો બિંદુ $P\,\,\left( {\sqrt 3 ,\,\,1} \right)$આગળ $PT$ સ્પર્શક દોર્યો. $PT$ ને લંબ સુરેખા $L$ એ વર્તૂળ $(x - 3)^2+ y^2 = 1$ નો સ્પર્શક છે. બે વર્તૂળોનો સામાન્ય સ્પર્શક .....
$x^2 + y^2 - 4x - 6y - 21 = 0$ અને $3x + 4y + 5 = 0$ ના છેદબિંદુમાંથી અને બિંદુ $(1, 2)$ માંથી પસાર થતા વર્તૂળનું સમીકરણ :
જો $(4, -2)$ માંથી પસાર થતું વર્તૂળ $x^2 + y^2 + 2gf + 2fy + c = 0$ એ વર્તુળ $x^2 + y^2 -2x + 4y + 20 = 0$ સમકેન્દ્રી હોય,તો $c$ નું મૂલ્ય મેળવો.
વર્તૂળો ${x^2} + {y^2} + 2ax + cy + a = 0$ અને ${x^2} + {y^2} - 3ax + dy - 1 = 0$ બે ભિન્ન બિંદુઓ $P$ અને $Q$ માં છેદે છે. $a$ ની કેટલી કિંમતો માટે રેખા $5x + by - a = 0$ બિંદુ $P$ અને $Q$ માંથી પસાર થાય..