જો ઉપવલયની બે નાભિઓ વચ્ચેનું અંતર બરાબર તેની પ્રધાન અક્ષ હોય, તો ઉપવલયની ઉત્કેન્દ્રતા =
$e\,\, = \,\,\frac{1}{{\sqrt 2 }}$
$e\,\, = \,\,\frac{1}{{\sqrt 3 }}$
$e\,\, = \,\,\frac{1}{{\sqrt 4 }}$
$e\,\, = \,\,\frac{1}{{\sqrt 6 }}$
જો $\alpha$ અને $\beta$ એ ઉપવલય $\frac{{{x^2}}}{{{a^2}}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1$ની નાભિજીવાના અંત્યબિંદુઓના ઉત્કેન્દ્રીકરણ હોય, તો $tan\ \alpha /2. tan\ \beta/2 = ....$
જો $L$ એ પરવલય $y^{2}=4 x-20$ નો બિંદુ $(6,2)$ આગળનો સ્પર્શક છે. જો $L$ એ ઉપવલય $\frac{ x ^{2}}{2}+\frac{ y ^{2}}{ b }=1$ નો પણ સ્પર્શક હોય તો $b$ ની કિમંત મેળવો.
જો વક્રો $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ અને $x^{2}+y^{2}=12$ ના સામાન્ય સ્પર્શકની ઢાળ $m$ હોય, તો $12\,m^{2}=\dots\dots\dots$
જો ઉપવલયને વર્તૂળ ${\left( {x - 1} \right)^2} + {y^2} = 1$ ના વ્યાસને અર્ધ-ગૌણ અક્ષ તરીકે લેવામાં આવે છે અને વર્તૂળ ${x^2} + {\left( {y - 2} \right)^2} = 4$ ના વ્યાસને અર્ધ-પ્રધાન અક્ષ તરીકે લેવામાં આવે છે.જો ઉપવલયનું કેન્દ્ર ઊગમબિંદુ હોય અને અક્ષો યામાક્ષો હોય,તો ઉપવલયનું સમીકરણ મેળવો.
આપેલ ઉપવલય માટે નાભિના યામ, શિરોબિંદુઓ તથા પ્રધાન અક્ષ તથા ગૌણ અક્ષની લંબાઈ, ઉત્કેન્દ્રતા અને નાભિલંબની લંબાઈ શોધોઃ
$\frac{x^{2}}{16}+\frac {y^2} {9}=1$