$l x + my + n = 0 $ એ વર્તૂળ $x^2 + y^2 = r^2$ ની સ્પર્શક રેખા ક્યારે થાય ?
$l^2 + m^2 = n^2r^2$
$l^2 + m^2 = n^2 + r^2$
$n^2 = r^2 (l^2+ m^2)$
એકપણ નહિ
વર્તુળ $C_{1}$ એ ઉગમબિંદુ $O$ માંથી પસાર થાય છે અને ધન $x-$ અક્ષ પર $4$ લંબાઇનો વ્યાસ છે. રેખા $y =2 x$ એ વર્તુળ $C _{1}$ પર જીવા $OA$ બનાવે છે. અહી $C _{2}$ માં $OA$ વ્યાસ છે. જો $C _{2}$ નો બિંદુ $A$ આગળનો સ્પર્શક $x$-અક્ષને બિંદુ $P$ અને $y$-અક્ષને $Q$ માં છેદે છે તો $QA : AP$ ની કિમંત મેળવો.
રેખા $2 x - y +1=0$ એ બિંદુ $(2,5)$ આગળ વર્તુળનો સ્પર્શક બને છે કે જેનું કેન્દ્ર રેખા $x-2 y=4$ પર આવેલ હોય તો વર્તુળની ત્રિજ્યા મેળવો.
બિંદુ $ (0, 1)$ માંથી વર્તૂળ $x^2 + y^2 - 2x + 4y = 0 $ પર દોરેલા સ્પર્શકોની જોડનું સમીકરણ . . . . . .
જો વર્તૂળ $S = x^2 + y^2 + 2gx + 2fy + c = 0$ દ્વારા બિંદુ $P(x_1, y_1) $ આગળ બનતો ખૂણો $\theta$ હોય, તો....
$(\alpha , \beta)$ પરથી વર્તૂળ $x^{2} + y^{2} = a^{2}$ પર દોરેલા બે સ્પર્શકો વચ્ચેનો ખૂણો :