જો ત્રણ રેખાઓ $ p_1x + q_1y = 1, p_2x + q_2y = 1$ અને $ p_3x + q_3y = 1 $ તો બિંદુઓ $(p_1, q_1), (p_2, q_2), (p_3, q_3):$
કાટકોણ ત્રિકોણના શિરોબિંદુઓ હોય.
સમબાજુ ત્રિકોણના શિરોબિંદુઓ હોય.
સમદ્રિબાજુ ત્રિકોણના શિરોબિંદુઓ હોય.
સમરેખીય
$A (2, 3), B (4, -1)$ અને $C (1, 2)$ એ $\Delta ABC$ નાં શિરોબિંદુઓ છે. $\Delta ABC$ ના શિરોબિંદુ માંથી દોરેલા વેધની લંબાઈ અને તેનું સમીકરણ શોધો.
$A\ (3, 4)$ અને $B\ (5, -2)$ બે બિંદુઓ આપેલા છે. જો $PA = PB$ અને $\Delta PAB$ નું ક્ષેત્રફળ = $10$ હોય, તો $P$ શોધો.
જો ત્રિકોણની બાજુઓ $y = mx + a, y = nx + b$ અને $x = 0,$ હોય, તો તેનું ક્ષેત્રફળ :
રેખાઓ $x \cos \theta+y \sin \theta=7, \theta \in\left(0, \frac{\pi}{2}\right)$ ના યામાક્ષો વચ્યેની રેખાખંડોના મધ્યબિંદુઓ દ્વારા આલેખાયેલ વક્ર પર બિંદુ $\left(\alpha, \frac{7 \sqrt{3}}{3}\right)$ આવેલ હોય, તો $\alpha=.........$
ત્રિકોણના બે શિરોબિંદુઓ $(5, - 1)$ અને $( - 2,3)$ હોય અને લંબકેન્દ્ર ઊગમબિંદુ હોય તો ત્રીજું શિરોબિંદુ મેળવો.