સદિશ $\mathop A\limits^ \to \, $ અને  $\,\,\mathop B\limits^ \to $ અક્ષની સાપેક્ષે અનુક્રમે $20^o$ અને $110^o$ ખૂણો બનાવે છે. આ સદિશોનું મૂલ્ય અનુક્રમે $5 \,m$ અને $12\, m$ છે.પરિણામી  સદિશમાંથી રચાતા ખૂણાનું મૂલ્ય ..... મળે.

  • A

    $tan^{-1}(11/4)$

  • B

    $tan^{-1}(12/5)$

  • C

    $tan^{-1}(14/7)$

  • D

    $tan^{-1}(19/3)$

Similar Questions

$\mathop {\,{\rm{A}}}\limits^ \to \,\, + \;\,\mathop {\rm{B}}\limits^ \to \,\, + \,\,\mathop {\rm{C}}\limits^ \to \, = \,\,\mathop 0\limits^ \to $ આપેલ છે. ત્રણ સદિશ પૈકી બે સદિશોનું મૂલ્ય સમાન છે. અને ત્રીજા સદિશનું મૂલ્ય $\sqrt 2 $  ગણું કે જે બે સમાન મૂલ્ય સિવાયનું છે. તો સદિશો વચ્ચેના ખૂણાઓ શું હશે ?

જો  $\mathop {\,{\text{A}}}\limits^ \to  \,\, \times \;\,\mathop {\text{B}}\limits^ \to  \,\, = \,\,\mathop {\,{\text{B}}}\limits^ \to  \,\, \times \;\,\mathop {\text{A}}\limits^ \to  \,$ હોય તો ,$A$ અને $B$ વચ્ચેનો ખૂણો શોધો 

$5 \,N$ બળ શિરોલંબ સાથે $60^°$ ના ખૂણે લાગે છે,તો બળનો શિરોલંબ ઘટક......... $N$ મેળવો.

અલગ અલગ મૂલ્ય ધરાવતાં એક જ સમતલના કેટલા સદિશોનો સરવાળો કરતાં પરિણામી શૂન્ય મળે છે?

ચાર વ્યકિતઓ $P, Q, R$ અને $S$ એ $d$ બાજુ ધરાવતા ચોરસના ખૂણાઓના શરૂઆતમાં ઉભા છે. હવે દરેક વ્યક્તિ અચળ ઝડપ $v$ સાથે ગતિ કરવાની શરૂઆત કરે છે, અહી $P$ એ $Q$ તરફ, $Q$ એ $R$ તરફ, $R$ એ $S$ તરફ અને $S$ એ $P$ તરફ જાય છે. તો ચાર વ્યક્તિઓ કેટલા સમય પછી મળશે ?