તાર્કિક વિધાનોના બુલીય બીર્જીણિતના સરવાળા વિશે એકમ ઘટક કયો છે ?
$\sim t$
આપેલ પૈકી એકપણ નહિ.
$\sim c $
$t$
બુલીય અભિવ્યક્તિ $\left(\sim\left(p^{\wedge} q\right)\right) \vee q$એ $\dots\dots\dots\dots$ને સમકક્ષ છે.
જો વિધાન $(p \rightarrow q) \rightarrow (q \rightarrow r)$ એ અસત્ય હોય તો વિધાનો $p,q,r$ નું સત્યાર્થતા મૂલ્ય અનુક્રમે ......... થાય
ધારો કે $\Delta, \nabla \in\{\wedge, v\}$ એવાં છે કે જેથી $p$ $\nabla\,q \Rightarrow(( p \Delta q ) \nabla r )$ એ નિત્યસત્ય $(tautology)$ થાય.તો $( p \nabla q ) \Delta\,r$ એ $\dots\dots\dots$ને તાર્કિક રીતે સમકક્ષ છે.
ધારોકે $p$ અને $q$ બે વિધાનો છે. તો $\sim\left(p_{\wedge}(p \Rightarrow \sim q)\right)=.............$
વિધાન - 1 :$\sim (p \Leftrightarrow \sim q) એ p \Leftrightarrow q$ સાથે સમતુલ્ય છે.
વિધાન - 2 :$ \sim (p \Leftrightarrow \sim q)$ એ માત્ર પુનરાવૃતિ છે.