જો $S^*(p, q, r)$ એ સંયુક્ત વિધાન $S(p, q, r)$ અને $S(p, q, r) = \sim p \wedge [\sim (q \vee r)]$ નું દ્વૈત હોય, તો $S^*(\sim p, \sim q, \sim r)$ એ કોના સાથે સમતુલ્યતા ધરાવે.
$S(p, q, r)$
$\sim S(\sim p, \sim q, \sim r)$
$\sim S(p, q, r)$
$S^*(p, q, r)$
$\sim (p \vee q) \vee (\sim p \wedge q)$ એ કોના બરાબર છે ?
વિધાન $((A \wedge(B \vee C)) \Rightarrow(A \vee B)) \Rightarrow A$ નું નિષેધ $.........$ છે.
જો વિધાન $(p \rightarrow q) \rightarrow (q \rightarrow r)$ એ અસત્ય હોય તો વિધાનો $p,q,r$ નું સત્યાર્થતા મૂલ્ય અનુક્રમે ......... થાય
$p\Rightarrow q$ ના સમાનાર્થીંનું પ્રતિપ......છે.
ધારો કે $F_{1}(A, B, C)=(A \wedge \sim B) \vee[\sim C \wedge(A \vee B)] \vee \sim A$ અને $F _{2}( A , B )=( A \vee B ) \vee( B \rightarrow \sim A )$ એ બે તાર્કિક અભિવ્યક્તિઓ છે. તો :