વિધાન $p \rightarrow (q \rightarrow p)$ કોના સાથે સમતુલ્ય છે ?
$p \rightarrow (p \rightarrow q)$
$p \rightarrow (p \vee q)$
$p \rightarrow (p \wedge q)$
$p \rightarrow (p \Leftrightarrow q)$
$m$ અને $n$ એ બંને $1$ કરતાં મહત્તમ પૂર્ણાંકો છે નીચેના વિધાનો માટે, જો
$P$ : $m$ એ $n$ વડે વિભાજ્ય છે
$Q$ : $m$ એ $n^2$ વડે વિભાજ્ય છે
$R$ : $m$ એ અવિભાજય સંખ્યા છે તો સાચું વિધાન .
"જો ચોરસની બાજુને બમણી કરવામાં આવે તો તેનું ક્ષેત્રફળ ચારગણું થાય " આ વિધાનનું સામાનાર્થી પ્રેરણ ............... થાય
$p \wedge (\sim q \vee \sim r)$ નું નિષેધ મેળવો.
ધારોકે $\Delta, \nabla \in\{\Lambda, v\}$ એવા છે કે જેથી $( p \rightarrow q ) \Delta( p \nabla q )$ એ નિત્યસત્ય છે. તો
જો $(p \wedge r) \Leftrightarrow(p \wedge(\sim q))$ એ $(\sim p)$ સમકક્ષ હોય, તો $r=$ ........