$6$ ભિન્ન રંગના કાચના મણકા પૈકી $4$ મણકા અને $5$ ભિન્ન રંગના ધાતુના મણકા પૈકી $4$ મણકા પસંદ કરી કેટલા હાર બનાવી શકાય ?
$^6{P_4}\,\, \times \,{\,^5}{P_4} \times \frac{{7\,!}}{{2\,!}}$
$^6{C_4}\,\, \times \,{\,^5}{C_4} \times \frac{{7\,!}}{{2\,!}}$
$^6{C_4}\,\, \times \,{\,^5}{C_4} \times \frac{{8\,!}}{{2\,!}}$
$^6{C_4}\,\, \times \,{\,^5}{C_4} \times 7!$
એક થેલીમાં $5$ કાળા અને $6$ લાલ દડા છે. $2$ કાળા તથા $3$ લાલ દડાની પસંદગી કેટલા પ્રકારે થઇ શકે?
જો $\left( {_{r - 1}^{\,\,n}} \right) = 36,\left( {_r^n} \right) = 84$ અને $\,\left( {_{r + 1}^{\,\,n}} \right) = 126\,$ હોય , તો $r\, = \,\,..........$
$5$ ઈનામો $4$ છોકરાંઓ વચ્ચે કેટલી ભિન્ન રીતે વહેંચી શકાય જ્યારે દરેક છોકરો કોઈ પણ ઈનામની સંખ્યા લઈ શકે છે?
જો $\left( {\begin{array}{*{20}{c}}
{n\, - \,1} \\
r
\end{array}} \right)\,\, = \,\,\left( {\,{k^2}\, - \,3\,} \right)\,\,\left( {\begin{array}{*{20}{c}}
n \\
{r\, + \,1}
\end{array}} \right)\,$ તો $k\, \in \,\,..........$
અહી $\left(\begin{array}{l}n \\ k\end{array}\right)$ એ ${ }^{n} C_{k}$ દર્શાવે છે અને $\left[\begin{array}{l} n \\ k \end{array}\right]=\left\{\begin{array}{cc}\left(\begin{array}{c} n \\ k \end{array}\right), & \text { if } 0 \leq k \leq n \\ 0, & \text { otherwise }\end{array}\right.$ છે.
જો $A_{k}=\sum_{i=0}^{9}\left(\begin{array}{l}9 \\ i\end{array}\right)\left[\begin{array}{c}12 \\ 12-k+i\end{array}\right]+\sum_{i=0}^{8}\left(\begin{array}{c}8 \\ i\end{array}\right)\left[\begin{array}{c}13 \\ 13-k+i\end{array}\right]$
અને $A_{4}-A_{3}=190 \mathrm{p}$ હોય તો $p$ ની કિમંત મેળવો.