જો $\left( {\begin{array}{*{20}{c}}
{n\, - \,1} \\
r
\end{array}} \right)\,\, = \,\,\left( {\,{k^2}\, - \,3\,} \right)\,\,\left( {\begin{array}{*{20}{c}}
n \\
{r\, + \,1}
\end{array}} \right)\,$ તો $k\, \in \,\,..........$
$[ - 2, - \sqrt 3 ]\,\, \cup \,\,[\sqrt 3 ,2]$
$( - 2, - \sqrt 3 )\,\, \cup \,\,(\sqrt 3 ,2)$
$( - 2, - \sqrt 3 ]\,\, \cup \,\,[\sqrt 3 ,2)$
$[ - 2,\sqrt 3 )\,\, \cup \,\,(\sqrt 3 ,2]$
$12$ જગ્યાઓ માટે $25$ વ્યકિતઓએ ઉમેદવારી નોંધાવી છે, જે પૈકી $5$ જણા અનામત કક્ષાના છે. $3$ જગ્યાઓ અનામત છે અને બાકીના માટે ખૂલ્લગ છે, તો પસંદંગી......રીતે થઇ શકે.
એક જૂથમાં $4$ કુમારીઓ અને $7$ કુમારી છે. જેમાં ઓછામાં ઓછી $3$ કુમારી આવેલ હોય એવી $5$ સભ્યોની કેટલી ટુકડીઓ બનાવી શકાય.
જો $\left( {\begin{array}{*{20}{c}}
{189} \\
{35}
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
{189} \\
x
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{190} \\
x
\end{array}} \right)\,\,$ હોય તો ,$x\, = \,\,.........$
એક રેખા પર છ $‘+’$ અને ચાર $‘-’$ ની નિશાની રાખવામાં આવે છે કે જેથી કોઇપણ બે $‘-’$ નિશાની પાસપાસે ન આવે તો આવી કુલ ગોઠવણી મેળવો.
$\mathrm{EXAMINATION}$ શબ્દના તમામ ભિન્ન ક્રમચયોને જો શબ્દકોષ પ્રમાણે ગોઠવી યાદી બનાવવામાં આવે તો પ્રથમ શબ્દ $\mathrm{E}$ થી શરૂ થાય તે શબ્દ પહેલા કેટલા શબ્દો હશે ?