સમાંતર શ્રેણીનું $r$ મું પદ $T_r$ લો.$ r = 1, 2, 3, ….$ માટે. જો કેટલાક ધન પૂર્ણાકો $m, n$ માટે

${{\text{T}}_{\text{m}}}\,=\,\,\frac{1}{n}\,$ અને ${{\text{T}}_{\text{n}}}\,=\,\frac{\text{1}}{\text{m}}\text{,}$ હોય,તો ${{\text{T}}_{\text{mn}}}\text{ }......$

  • A

    $\frac{1}{{mn}}$

  • B

    $\frac{1}{m}\, + \,\,\frac{1}{n}$

  • C

    $1$

  • D

    $0$

Similar Questions

${a_1},{a_2},.......,{a_{30}}$ એ સમાંતર શ્રેણીમાં છે. $S = \sum\limits_{i = 1}^{30} {{a_i}} $ અને $T = \sum\limits_{i = 1}^{15} {{a_{2i - 1}}} $. જો  ${a_5} = 27$ અને $S - 2T = 75$ , તો $a_{10}$ મેળવો.

  • [JEE MAIN 2019]

$100$ અને $1000$ વચ્ચેની $5$ ની ગુણિત પ્રાકૃતિક સંખ્યાઓનો સરવાળો શોધો.

$3 + 7 + 11 +....+ 407$ સમાંતર શ્રેણીમાં છેલ્લેથી $20$ મું પદ ......છે.

અહી $a_1, a_2, a_3 \ldots$ એ સમાંતર શ્રેણીમાં છે કે જેથી $\sum_{ k =1}^{12} a _{2 k -1}=-\frac{72}{5} a _1, a _1 \neq 0$. જો $\sum_{ k =1}^{ n } a _{ k }=0$ હોય તો $n$ ની કિમંત મેળવો.

  • [JEE MAIN 2025]

શ્રેણીઓ $4,9,14,19, \ldots . . .25$ માં પદ સુધી તથા $3,6,9,12, \ldots . . .37$ માં પદ સુધીના સામાન્ય પદોની સંખ્યા . . . . . .. છે.

  • [JEE MAIN 2024]