સમાંતર શ્રેણીનું $7$ મુ પદ $40$ હોય, તો તેના પ્રથમ $13$ પદોનો સરવાળો........ થશે.
$53$
$520$
$1040$
$2080$
જો એક વધતી સમાંતર શ્રેણી $b _{1}, b _{2}, b _{3}, \ldots b _{11}$ નો વિચરણ $90$ હોય તો આ સમાંતર શ્રેણીનો સામાન્ય તફાવત શોધો
જો $\frac{1}{{{x_1}}},\frac{1}{{{x_2}}},\frac{1}{{{x_3}}},.....,$ $({x_i} \ne \,0\, $ બધા $\,i\, = 1,2,....,n)$ એ સમાંતર શ્રેણીમાં હોય કે જ્યાં $x_1 = 4$ અને $x_{21} = 20$ અને $x_n > 50$ જ્યાં $n$ એ ન્યૂનતમ ધન પૂર્ણાંક સંખ્યા છે તો $\sum\limits_{i = 1}^n {\left( {\frac{1}{{{x_i}}}} \right)} $ ની કિમત મેળવો
સમાંતર શ્રેણીના પ્રથમ $n$ પદોનો સરવાળો $2n + 3n^2$ છે અને નવી સમાંતર શ્રેણી બનાવમાં આવે છે કે જેમાં પ્રથમ પદ સમાન હોય અને સામાન્ય તફાવત બમણો હોય તો નવી શ્રેણીના $n$ પદનો સરવાળો મેળવો.
અહી $S_{n}$ એ સમાંતર શ્રેણીના $n$- નો સરવાળો દર્શાવે છે. જો $S_{10}=530, S_{5}=140$ તો $\mathrm{S}_{20}-\mathrm{S}_{6}$ ની કિમંત મેળવો.
સમાંતર શ્રેણીમાં યુગ્મ પદ છે. જો તેમાં રહેલ અયુગ્મ પદનો સરવાળો $24$ અને યુગ્મ પદનો સરવાળો $30$ છે. જો અંતિમ પદ પ્રથમ પદ કરતાં $10\frac{1}{2}$ જેટલું વધારે હોય તો સમાંતર શ્રેણીના પદની સંખ્યા મેળવો.