વિધાન $- I :$ જો શ્રેણીના $n$ પદોનો સરવાળો $6n^2 + 3n + 1$ થાય, તો તે સમાંતર શ્રેણી હોય
વિધાન $-II :$ સમાંતર શ્રેણીના $n$ પદોનો સરવાળો હંમેશા $an^2 + bn$ સ્વરૂપમાં હોય.
વિધાન$- I$ સાચું છે. વિધાન$-II$ સાચું છે. વિધાન$-I$ એ વિધાન$-II$ ની સાચી સમજૂતી છે.
વિધાન$- I$ સાચું છે. વિધાન$-II$ સાચું છે. વિધાન$-II$ એ વિધાન$-I$ ની સાચી સમજૂતી નથી.
વિધાન$- I$ સાચું છે. વિધાન$-II$ ખોટું છે.
વિધાન$- I$ ખોટું છે. વિધાન$-II$ સાચું છે.
જો $a, b, c,d$ સમગુણોત્તર શ્રેણીમાં હોય, તો સાબિત કરો કે $\left(a^{n}+b^{n}\right),\left(b^{n}+c^{n}\right),\left(c^{n}+d^{n}\right)$ સમગુણોત્તર શ્રેણીમાં છે.
ધારો કે $A =\left\{1, a _{1}, a _{2} \ldots \ldots a _{18}, 77\right\}$ પૂર્ણકોનો ગણ છે જ્યાં $1< a _{1}< a _{2}<\ldots \ldots< a _{18}<77$. ધરો કે ગણ $A + A =\{ x + y : x , y \in A \} \quad$ બરાબર $39$ ઘટકો સમાવે છે તો $a_{1}+a_{2}+\ldots \ldots+a_{18}$ નું મૂલ્ય.................. છે
પ્રત્યેક પ્રાકૃતિક સંખ્યા $n$ માટે બે સમાંતર શ્રેણીઓનાં પ્રથમ $n$ પદોના સરવાળાનો ગુણોત્તર $(3 n+8):(7 n+15)$ હોય, તો તેમનાં $12$ માં પદનો ગુણોત્તર શોધો.
જો $x_1 , x_2 , ..... , x_n$ અને $\frac{1}{{{h_1}}},\frac{1}{{{h^2}}},......\frac{1}{{{h_n}}}$ એ એવી બે સમાંતર શ્રેણી કે જેથી $x_3 = h_2 = 8$ અને $x_8 = h_7 = 20$ હોય તો $x_5. h_{10}$ ની કિમત મેળવો.
જો સમાંતર શ્રેણીનું $10^{\text {th }}$ મુ પદ $\frac{1}{20}$ અને તેનું $20^{\text {th }}$ મુ પદ $\frac{1}{10},$ હોય તો પ્રથમ $200$ પદોનો સરવાળો મેળવો.