$\sim (p \Leftrightarrow q)$ is
$\sim p\; \wedge \sim q$
$\sim p\; \vee \sim q$
$(p\; \wedge \sim q) \vee (\sim p\; \wedge q)$
None of these
Statement $-1$ : The statement $A \to (B \to A)$ is equivalent to $A \to \left( {A \vee B} \right)$.
Statement $-2$ : The statement $ \sim \left[ {\left( {A \wedge B} \right) \to \left( { \sim A \vee B} \right)} \right]$ is a Tautology
The proposition $ \sim \left( {p\,\vee \sim q} \right) \vee \sim \left( {p\, \vee q} \right)$ is logically equivalent to
The statement $B \Rightarrow((\sim A ) \vee B )$ is equivalent to
Negation of $(p \Rightarrow q) \Rightarrow(q \Rightarrow p)$ is
For any two statements $p$ and $q,$ the negation of the expression $p \vee ( \sim p\, \wedge \,q)$ is