Statement $-1$ : The statement $A \to (B \to A)$ is equivalent to $A \to \left( {A \vee B} \right)$.
Statement $-2$ : The statement $ \sim \left[ {\left( {A \wedge B} \right) \to \left( { \sim A \vee B} \right)} \right]$ is a Tautology
Statement $-1$ is false; Statement $-2$ is true
Statement $-1$ is true; Statement $-2$ is true;
Statement $-2$ is not correct explanation for Statement $-1$
Statement $-1$ is true; Statement $-2$ is false
Statement $-1$ is true; Statement $-2$ is true;
Statement $-2$ is the correct explanation for Statement $-1$
If $p, q, r$ are simple propositions, then $(p \wedge q) \wedge (q \wedge r)$ is true then
Which of the following statements is $NOT$ logically equivalent to $\left( {p \to \sim p} \right) \to \left( {p \to q} \right)$?
Which of the following is the negation of the statement "for all $M\,>\,0$, there exists $x \in S$ such that $\mathrm{x} \geq \mathrm{M}^{\prime \prime} ?$
The Boolean expression $(\mathrm{p} \wedge \mathrm{q}) \Rightarrow((\mathrm{r} \wedge \mathrm{q}) \wedge \mathrm{p})$ is equivalent to :
The statement $\sim(p\leftrightarrow \sim q)$ is :