$2\,\,\left| {\,\begin{array}{*{20}{c}}1&1&1\\a&b&c\\{{a^2} - bc}&{{b^2} - ac}&{{c^2} - ab}\end{array}\,} \right| = $
$0$
$1$
$2$
$3abc$
નિશ્ચાયકના ગુણધર્મનો ઉપયોગ કરીને સાબિત કરો : $\left|\begin{array}{ccc}1+a^{2}-b^{2} & 2 a b & -2 b \\ 2 a b & 1-a^{2}+b^{2} & 2 a \\ 2 b & -2 a & 1-a^{2}-b^{2}\end{array}\right|=\left(1+a^{2}+b^{2}\right)^{3}$
જો $\left| {\begin{array}{*{20}{c}} {a - b}&{b - c}&{c - a} \\ {b - c}&{c - a}&{a - b} \\ {c - a + 1}&{a - b}&{b - c} \end{array}} \right| = 0$ ,$\left( {a,b,c \in R - \left\{ 0 \right\}} \right),$ તો
જો $a, b, c $ એ દરેક એકબીજાથી ભિન્ન હોય અને $\left| {\,\begin{array}{*{20}{c}}a&{{a^3}}&{{a^4} - 1}\\b&{{b^3}}&{{b^4} - 1}\\c&{{c^3}}&{{c^4} - 1}\end{array}\,} \right|=0$ , તો $abc(ab + bc + ca)$ =
જો $\left| {\,\begin{array}{*{20}{c}}a&b&{a\alpha + b}\\b&c&{b\alpha + c}\\{a\alpha + b}&{b\alpha + c}&0\end{array}\,} \right| = 0$ તો $a,b,c$ એ . . . .શ્રેણીમાં છે .
નીચે આપેલ શ્રેણિક પૈકી ક્યો શ્રેણિક એ શ્રેણિક $\left[\begin{array}{cc}-1 & 2 \\ 1 & -1\end{array}\right]$ પર એક્જ હાર પ્રક્રિયાથી મેળવી શકાય નહીં.