$\Delta = \left| {\,\begin{array}{*{20}{c}}a&{a + b}&{a + b + c}\\{3a}&{4a + 3b}&{5a + 4b + 3c}\\{6a}&{9a + 6b}&{11a + 9b + 6c}\end{array}\,} \right|$ કે જ્યાં $a = i,b = \omega ,c = {\omega ^2}$, તો $\Delta $ મેળવો.

  • A

    $i$

  • B

    $ - {\omega ^2}$

  • C

    $\omega $

  • D

    $ - i$

Similar Questions

જો $\omega $ એકનું કાલ્પનિક ઘનમૂળ હોય , તો $\left| {\,\begin{array}{*{20}{c}}a&{b{\omega ^2}}&{a\omega }\\{b\omega }&c&{b{\omega ^2}}\\{c{\omega ^2}}&{a\omega }&c\end{array}\,} \right|$ મેળવો.

જો $S$ એ $\lambda \in \mathrm{R}$ ની બધી કિમતોનો ગણ છે કે જ્યાં સુરેખ સંહિતા 

$2 x-y+2 z=2$

$x-2 y+\lambda z=-4$

$x+\lambda y+z=4$

ને એક પણ ઉકેલ ના હોય તો ગણ $S$ માં 

  • [JEE MAIN 2020]

જો $A = \int\limits_1^{\sin \theta } {\frac{t}{{1 + {t^2}}}} dt$ અને  $B = \int\limits_1^{\cos ec\theta } {\frac{dt}{{t\left( {1 + {t^2}} \right)}}} $ , (કે જ્યાં  $\theta  \in \left( {0,\frac{\pi }{2}} \right))$, હોય તો  $\left| {\begin{array}{*{20}{c}}
A&{{A^2}}&{ - B}\\
{{e^{A + B}}}&{{B^2}}&{ - 1}\\
1&{{A^2} + {B^2}}&{ - 1}
\end{array}} \right|$ ની કિમંત મેળવો.

સમીકરણની સંહતિ $a + b - 2c = 0,$ $2a - 3b + c = 0$ અને $a - 5b + 4c = \alpha $ એ સુસંગત થવા માટે $\alpha$ મેળવો.

નિશ્ચાયકનું મૂલ્ય શોધો : $\left|\begin{array}{ll}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right|$