$\Delta = \left| {\,\begin{array}{*{20}{c}}a&{a + b}&{a + b + c}\\{3a}&{4a + 3b}&{5a + 4b + 3c}\\{6a}&{9a + 6b}&{11a + 9b + 6c}\end{array}\,} \right|$ કે જ્યાં $a = i,b = \omega ,c = {\omega ^2}$, તો $\Delta $ મેળવો.
$i$
$ - {\omega ^2}$
$\omega $
$ - i$
સમીકરણ $\left| {\begin{array}{*{20}{c}}
x&{ - 6}&{ - 1}\\
2&{ - 3x}&{x - 3}\\
{ - 3}&{2x}&{x = 2}
\end{array}} \right| = 0$ ના વાસ્તવિક બીજનો સરવાળો મેળવો.
$\theta \in(0,4 \pi)$ ની કેટલી કિમંતો માટે સમીકરણ સંહતિ $3(\sin 3 \theta) x-y+z=2$, $3(\cos 2 \theta) x+4 y+3 z=3$, $6 x+7 y+7 z=9$ ને એકપણ ઉકેલ ન હોય.
$\theta \in (0,\pi)$ ની કેટલી કિમંત માટે રેખીય સમીકરણો $x + 3y + 7z = 0$ ; $-x + 4y + 7z = 0$ ; $ (sin\,3\theta )x + (cos\,2\theta )y + 2z = 0$ ને શૂન્યતર ઉકેલ ધરાવે .
$a$ અને $b$ ની કઈ કિમંતો માટે આપેલ સમીકરણ સંહતીઓ $2 x+3 y+6 z=8$ ; $x+2 y+a z=5$ ; $3 x+5 y+9 z=b$ નો બીજગણ ખાલી ગણ થાય.
જો $\left|\begin{array}{ll}3 & x \\ x & 1\end{array}\right|=\left|\begin{array}{ll}3 & 2 \\ 4 & 1\end{array}\right|$ હોય, તો $x$ નું મૂલ્ય શોધો.