$\left| {\,\begin{array}{*{20}{c}}{b + c}& a& a\\b& {c + a}& b\\c& c& {a + b}\end{array}\,} \right| = $
$abc$
$2abc$
$3abc$
$4abc$
सारणिक $\left| {\,\begin{array}{*{20}{c}}0&{{b^3} - {a^3}}&{{c^3} - {a^3}}\\{{a^3} - {b^3}}&0&{{c^3} - {b^3}}\\{{a^3} - {c^3}}&{{b^3} - {c^3}}&0\end{array}\,} \right|$ का मान है
यदि $\left| {\,\begin{array}{*{20}{c}}{x + 1}&{x + 2}&{x + 3}\\{x + 2}&{x + 3}&{x + 4}\\{x + a}&{x + b}&{x + c}\end{array}\,} \right| = 0$, तो $a,b,c$ हैं
$\left| {\,\begin{array}{*{20}{c}}{{5^2}}&{{5^3}}&{{5^4}}\\{{5^3}}&{{5^4}}&{{5^5}}\\{{5^4}}&{{5^5}}&{{5^7}}\end{array}\,} \right|$ का मान है
सारणिकों के गुणधर्मों का प्रयोग करके सिद्ध कीजिए :
$\left|\begin{array}{ccc}0 & a & -b \\ -a & 0 & -c \\ b & c & 0\end{array}\right|=0$
बिना प्रसरण किए और सारणिकों के गुणधर्मो का प्रयोग करके सिद्ध कीजिए।
$\left|\begin{array}{lll}x & a & x+a \\ y & b & y+b \\ z & c & z+c\end{array}\right|=0$