$\left| {\,\begin{array}{*{20}{c}}{1 + i}&{1 - i}&i\\{1 - i}&i&{1 + i}\\i&{1 + i}&{1 - i}\end{array}\,} \right| = $

  • A

    $ - 4 - 7i$

  • B

    $4 + 7i$

  • C

    $3 + 7i$

  • D

    $7 + 4i$

Similar Questions

અહી $\theta \in\left(0, \frac{\pi}{2}\right)$ આપેલ છે. જો સમીકરણ સંહતિ

$\left(1+\cos ^{2} \theta\right) x+\sin ^{2} \theta y+4 \sin 3 \theta z=0$

$\cos ^{2} \theta x+\left(1+\sin ^{2} \theta\right) y+4 \sin 3 \theta z=0$

$\cos ^{2} \theta x+\sin ^{2} \theta y+(1+4 \sin 3 \theta) z=0$

ને શૂન્યતર ઉકેલ ધરાવે છે તો $\theta$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]

If $1,\omega ,{\omega ^2}$ are the cube roots of unity, then $\Delta = \left| {\,\begin{array}{*{20}{c}}1&{{\omega ^n}}&{{\omega ^{2n}}}\\{{\omega ^n}}&{{\omega ^{2n}}}&1\\{{\omega ^{2n}}}&1&{{\omega ^n}}\end{array}\,} \right|$ is equal to

  • [AIEEE 2003]

$\lambda$ અને $\mu$ ની કિમંત મેળવો કે જેથી સમીકરણ સંહતિ $x+y+z=6,3 x+5 y+5 z=26, x+2 y+\lambda z=\mu$ નો ઉકેલગણ ખાલીગણ થાય.

  • [JEE MAIN 2021]

જો $[x]$ એ મહતમ પૃણાંક વિધેય છે , તો રેખીય સમીકરણો $[sin \,\theta ] x + [-cos\,\theta ] y = 0$ ; $[cot \,\theta ] x + y = 0$ માટે . . . .

  • [JEE MAIN 2019]

જો રેખાઓ $x + 2ay + a = 0$, $x + 3by + b = 0$ અને $x + 4cy + c = 0$ એ સંગામી હોય તો $a$, $b$ અને $c$ એ   . . . . શ્રેણીમાં હોય .