$\left| {\,\begin{array}{*{20}{c}}{1 + i}&{1 - i}&i\\{1 - i}&i&{1 + i}\\i&{1 + i}&{1 - i}\end{array}\,} \right| = $

  • A

    $ - 4 - 7i$

  • B

    $4 + 7i$

  • C

    $3 + 7i$

  • D

    $7 + 4i$

Similar Questions

For what value of $k$ to the following system of equations possess a non-trivial solution ?

$x + ky + 3z = 0$   ;    $3x + ky + 2z = 0$  ; $2x + 3y + 4z = 0$

Number of values of $m$ for which the lines $x + y - 1 = 0$, $(m - 1) x + (m^2 - 7) y - 5 = 0 \,\,\&\,\, (m - 2) x + (2m - 5) y = 0$ are concurrent, are

How many values of $k $ , systeam of linear equations $\left( {k + 1} \right)x + 8y = 4k\;,\;kx + \left( {k + 3} \right)y$$ = 3k - 1$ has no solutions.

  • [IIT 2002]

If $x = cy + bz,\,\,y = az + cx,\,\,z = bx + ay$ (where $x, y, z $ are not all zero) have a solution other than $x = 0$, $y = 0$, $z = 0$ then $a, b$  and $ c $ are connected by the relation

  • [IIT 1978]

If $\left| {\,\begin{array}{*{20}{c}}a&b&0\\0&a&b\\b&0&a\end{array}\,} \right| = 0$, then