$\left| {\,\begin{array}{*{20}{c}}{1 + i}&{1 - i}&i\\{1 - i}&i&{1 + i}\\i&{1 + i}&{1 - i}\end{array}\,} \right| = $

  • A

    $ - 4 - 7i$

  • B

    $4 + 7i$

  • C

    $3 + 7i$

  • D

    $7 + 4i$

Similar Questions

Let $A =$ $\left[ {\begin{array}{*{20}{c}}{1 + {x^2} - {y^2} - {z^2}}&{2(xy + z)}&{2(zx - y)}\\{2(xy - z)}&{1 + {y^2} - {z^2} - {x^2}}&{2(yz + x)}\\{2(zx + y)}&{2(yz - x)}&{1 + {z^2} - {x^2} - {y^2}}\end{array}} \right]$  then det. $A$ is equal to

If for some $\alpha$ and $\beta$ in $R,$ the intersection of the following three planes  $x+4 y-2 z=1$ ; $x+7 y-5 z=\beta$ ; $x+5 y+\alpha z=5$ is a line in $\mathrm{R}^{3},$ then $\alpha+\beta$ is equal to

  • [JEE MAIN 2020]

The value of the determinant$\left| {\,\begin{array}{*{20}{c}}{ - 1}&1&1\\1&{ - 1}&1\\1&1&{ - 1}\end{array}\,} \right|$is equal to

Evaluate the determinants : $\left|\begin{array}{cc}x^{2}-x+1 & x-1 \\ x+1 & x+1\end{array}\right|$

Evaluate the determinants

$\left|\begin{array}{rrr}3 & -1 & -2 \\ 0 & 0 & -1 \\ 3 & -5 & 0\end{array}\right|$