For what value of $k$ to the following system of equations possess a non-trivial solution ?

$x + ky + 3z = 0$   ;    $3x + ky + 2z = 0$  ; $2x + 3y + 4z = 0$

  • A

    $\frac {11}{14}$

  • B

    $-\frac {33}{2}$

  • C

    $\frac {33}{20}$

  • D

    $\frac {33}{2}$

Similar Questions

Solution of the equation $\left| {\,\begin{array}{*{20}{c}}1&1&x\\{p + 1}&{p + 1}&{p + x}\\3&{x + 1}&{x + 2}\end{array}\,} \right| = 0$ are

The roots of the equation $\left| {\,\begin{array}{*{20}{c}}0&x&{16}\\x&5&7\\0&9&x\end{array}\,} \right| = 0$  are

If $\left| {\,\begin{array}{*{20}{c}}{{x^2} + x}&{x + 1}&{x - 2}\\{2{x^2} + 3x - 1}&{3x}&{3x - 3}\\{{x^2} + 2x + 3}&{2x - 1}&{2x - 1}\end{array}\,} \right| = Ax - 12$, then the value of $A $ is

  • [JEE MAIN 2015]

If the system of linear equations $x + y + z = 5$ ; $x = 2y + 2z = 6$ ; $x + 3y + \lambda z = u (\lambda \, \mu \in R)$, has infinitely many solutions then the value of $\lambda  + \mu $ is

  • [JEE MAIN 2019]

Let $\alpha $ and $\beta $ be the roots of the equation $x^2 + x + 1 = 0.$ Then for $y \ne 0$ in $R,$ $\left| {\begin{array}{*{20}{c}}
{y\, + \,1}&\alpha &\beta \\
\alpha &{y\, + \,\beta }&1\\
\beta &1&{y\, + \,\alpha }
\end{array}} \right|$ is equal to

  • [JEE MAIN 2019]