$n$ presence of $HCl$, sucrose gets hydrolysed into glucose and fructose. The concentration of sucrose was found to reduce form $0.4\,M $ to $0.2 \,M$  in $1$  hour and $0.1 \,M $ in $2$ hours. The order of the reaction is

  • A

    $0$

  • B

    $1$

  • C

    $2$

  • D

    None of these

Similar Questions

Reaction : $KCl{O_3} + 6FeS{O_4} + 3{H_2}S{O_4} \to $ $KCl + 3F{e_2}{\left( {S{O_4}} \right)_3} + 3{H_2}O$

Which is True $(T)$ and False $(F)$ in the following sentence ?

The reaction is elementary.

For the reaction $A \to B$, the rate increases by a factor of $2.25 $ when the concentration of $A$ is increased by $ 1.5$. What is the order of the reaction

The data for the reaction $A + B \to C$ is

Exp $[A]_0$ $[B]_0$ initial rate
$1$ $0.012$ $0.035$ $0.10$
$2$ $0.024$ $0.035$ $0.80$
$3$ $0.012$ $0.070$ $0.10$
$4$ $0.024$ $0.070$ $0.80$

In a reaction between $A$ and $B$, the initial rate of reaction $\left(r_{0}\right)$ was measured for different initial concentrations of $A$ and $B$ as given below:

$A/mol\,\,{L^{ - 1}}$ $0.20$ $0.20$ $0.40$
$B/mol\,\,{L^{ - 1}}$ $0.30$ $0.10$ $0.05$
${r_0}/mol\,\,{L^{ - 1}}\,\,{s^{ - 1}}$ $5.07 \times 10^{-5}$ $5.07 \times 10^{-5}$ $1.43 \times 10^{-4}$

What is the order of the reaction with respect to $A$ and $B$?

$Zn + 2H^+ \to  Zn^{2+} + H_2$

The half-life period is independent of the concentration of zinc at constant $pH$. For the constant concentration of $Zn$, the rate becomes $100$ times when $pH$ is decreased from $3\, to\, 2$. Identify the correct statements $(pH = -\log [H^{+}])$

$(A)$  $\frac{{dx}}{{dt}}\, = k{[Zn]^0}{[{H^ + }]^2}$

$(B)$  $\frac{{dx}}{{dt}}\, = k{[Zn]}{[{H^ + }]^2}$

$(C)$ Rate is not affected if the concentraton of zinc is made four times and that of $H^+$ ion is halved.

$(D)$ Rate becomes four times if the concentration of $H^+$ ion is doubled at constant $Zn$ concentration