$n$ presence of $HCl$, sucrose gets hydrolysed into glucose and fructose. The concentration of sucrose was found to reduce form $0.4\,M $ to $0.2 \,M$ in $1$ hour and $0.1 \,M $ in $2$ hours. The order of the reaction is
$0$
$1$
$2$
None of these
Reaction : $KCl{O_3} + 6FeS{O_4} + 3{H_2}S{O_4} \to $ $KCl + 3F{e_2}{\left( {S{O_4}} \right)_3} + 3{H_2}O$
Which is True $(T)$ and False $(F)$ in the following sentence ?
The reaction is elementary.
For the reaction $A \to B$, the rate increases by a factor of $2.25 $ when the concentration of $A$ is increased by $ 1.5$. What is the order of the reaction
The data for the reaction $A + B \to C$ is
Exp | $[A]_0$ | $[B]_0$ | initial rate |
$1$ | $0.012$ | $0.035$ | $0.10$ |
$2$ | $0.024$ | $0.035$ | $0.80$ |
$3$ | $0.012$ | $0.070$ | $0.10$ |
$4$ | $0.024$ | $0.070$ | $0.80$ |
In a reaction between $A$ and $B$, the initial rate of reaction $\left(r_{0}\right)$ was measured for different initial concentrations of $A$ and $B$ as given below:
$A/mol\,\,{L^{ - 1}}$ | $0.20$ | $0.20$ | $0.40$ |
$B/mol\,\,{L^{ - 1}}$ | $0.30$ | $0.10$ | $0.05$ |
${r_0}/mol\,\,{L^{ - 1}}\,\,{s^{ - 1}}$ | $5.07 \times 10^{-5}$ | $5.07 \times 10^{-5}$ | $1.43 \times 10^{-4}$ |
What is the order of the reaction with respect to $A$ and $B$?
$Zn + 2H^+ \to Zn^{2+} + H_2$
The half-life period is independent of the concentration of zinc at constant $pH$. For the constant concentration of $Zn$, the rate becomes $100$ times when $pH$ is decreased from $3\, to\, 2$. Identify the correct statements $(pH = -\log [H^{+}])$
$(A)$ $\frac{{dx}}{{dt}}\, = k{[Zn]^0}{[{H^ + }]^2}$
$(B)$ $\frac{{dx}}{{dt}}\, = k{[Zn]}{[{H^ + }]^2}$
$(C)$ Rate is not affected if the concentraton of zinc is made four times and that of $H^+$ ion is halved.
$(D)$ Rate becomes four times if the concentration of $H^+$ ion is doubled at constant $Zn$ concentration