In a reaction between $A$ and $B$, the initial rate of reaction $\left(r_{0}\right)$ was measured for different initial concentrations of $A$ and $B$ as given below:
$A/mol\,\,{L^{ - 1}}$ | $0.20$ | $0.20$ | $0.40$ |
$B/mol\,\,{L^{ - 1}}$ | $0.30$ | $0.10$ | $0.05$ |
${r_0}/mol\,\,{L^{ - 1}}\,\,{s^{ - 1}}$ | $5.07 \times 10^{-5}$ | $5.07 \times 10^{-5}$ | $1.43 \times 10^{-4}$ |
What is the order of the reaction with respect to $A$ and $B$?
Let the order of the reaction with respect to $A$ be $x$ and with respect to $B$ be $y$.
Therefore,
$r _{0}=k[ A ]^{x}[ B ]^{y}$
$5.07 \times {10^{ - 5}} = k{[0.20]^x}{[0.30]^y}$ .......$(i)$
$5.07 \times 10^{-5}=k[0.20]^{x}[0.10]^{y}$ .........$(ii)$
$1.43 \times 10^{-4}=k[0.40]^{x}[0.05]^{y}$ ..........$(iii)$
Dividing equation $(i)$ by $(ii),$ we obtain
$\frac{5.07 \times 10^{-5}}{5.07 \times 10^{-5}}=\frac{k[0.20]^{x}[0.30]^{y}}{k[0.20]^{x}[0.10]^{y}}$
$\Rightarrow 1=\frac{[0.30]^{y}}{[0.10]^{y}}$
$ \Rightarrow {\left( {\frac{{0.30}}{{0.10}}} \right)^0} = {\left( {\frac{{0.30}}{{0.10}}} \right)^y}$
$\Rightarrow y=0$
Dividing equation $(iii)$ by $(ii),$ we obtain
$\frac{1.43 \times 10^{-4}}{5.07 \times 10^{-5}}=\frac{k[0.40]^{x}[0.05]^{y}}{k[0.20]^{x}[0.30]^{y}}$
$\Rightarrow \frac{1.43 \times 10^{-4}}{5.07 \times 10^{-5}}=\frac{[0.40]^{x}}{[0.20]^{x}}$ $\left[\begin{array}{l}\text { since } y=0 \\ {[0.05]^{y}=[0.30]^{y}=1}\end{array}\right]$
$\Rightarrow 2.821=2^{x}$
$\Rightarrow \log 2.821=x \log 2$ (Taking log on both sides)
$\Rightarrow x=\frac{\log 2.821}{\log 2}$
$=1.5$ (approximately)
Hence, the order of the reaction with respect to $A$ is $1.5$ and with respect to $B$ is zero
Which is correct about zero order reaction
For the reaction $C{H_3}COOC{H_3} + {H_2}O\xrightarrow{{{H^ + }}}$ $C{H_3}COOH + C{H_3}OH$ The progress of the process of reaction is followed by
If the rate of the reaction is equal to the rate constant, the order of the reaction is
For a reaction taking place in three steps at same temperature, overall rate constant $\mathrm{K}=\frac{\mathrm{K}_1 \mathrm{~K}_2}{\mathrm{~K}_3}$. If $\mathrm{Ea}_1, \mathrm{Ea}_2$ and $\mathrm{Ea}_3$ are $40$,$50$ and $60 \mathrm{~kJ} / \mathrm{mol}$ respectively, the overall $\mathrm{Ea}$ is ________ $\mathrm{kJ} / \mathrm{mol}$.
For the following rate law determine the unit of rate constant. Rate $=-\frac{d[ R ]}{d t}=k[ A ]^{\frac{1}{2}}[ B ]^{2}$