$A, B, C$ and $D$ are four different physical quantities having different dimensions. None of them is dimensionless. But we know that the equation $AD = C\, ln\, (BD)$ holds true. Then which of the combination is not a meaningful quantity ?
$\frac{C}{{BD}} - \frac{{A{D^2}}}{C}$
${A^2} - {B^2}{C^2}$
$\frac{A}{B} - C$
$\frac{{\left( {A - C} \right)}}{D}$
If the capacitance of a nanocapacitor is measured in terms of a unit $u$ made by combining the electric charge $e,$ Bohr radius $a_0,$ Planck's constant $h$ and speed of light $c$ then
A force $F$ is given by $F = at + b{t^2}$, where $t$ is time. What are the dimensions of $a$ and $b$
Which of the following is dimensionally correct
Young-Laplace law states that the excess pressure inside a soap bubble of radius $R$ is given by $\Delta P=4 \sigma / R$, where $\sigma$ is the coefficient of surface tension of the soap. The EOTVOS number $E_0$ is a dimensionless number that is used to describe the shape of bubbles rising through a surrounding fluid. It is a combination of $g$, the acceleration due to gravity $\rho$ the density of the surrounding fluid $\sigma$ and a characteristic length scale $L$ which could be the radius of the bubble. A possible expression for $E_0$ is
If the formula, $X=3 Y Z^{2}, X$ and $Z$ have dimensions of capacitance and magnetic induction. The dimensions of $Y$ in $M K S Q$ system are