સાધનની શૂન્ય ત્રુટિ શું બતાવે છે ?
વ્યવસ્થિત ત્રુટિ
અવ્યવસ્થિત ત્રુટિ
બંને
એક પણ નહિ
એક વિદ્યાર્થીં Searle's રીતથી $ 2m$ લંબાઈના એક તારના યંગના સ્થિતિ સ્થાપક અચળાંકની ગણતરી માટે પ્રયોગ કરે છે. ચોકસાઈપૂર્વકના અવલોકનમાં બરાબર $10 kg$ ના લોડ આગળ વિદ્યાર્થીંએ આપ્યું કે તારની લંબાઈ વિસ્તરણ $ \pm 0.05 mm $ અચોકકસતા સાથે $ 0.88\,mm $ જેટલું થાય છે. તે વિદ્યાર્થીં તારનો વ્યાસનું મૂલ્ય પણ $\pm 0.01 mm $અચોકકસતા સાથે $0.4 mm $ માપે છે. $g = 9.8 m/s^2$ (ચોકકસ) લો. અવલોકનમાં યંગનો સ્થિતિ સ્થાપકતા અચળાંક શોધો.
ચાંદીનાં તારનું દળ $(0.6 \pm 0.006) \,g$, ત્રિજ્યા $(0.5 \pm 0.005) \,mm$ અને લંબાઈ $(4 \pm 0.04) \,cm$ છે. તેની ધનતા માપવામાં મહત્તમ પ્રતિશત ત્રૂટિ $......\,\%$ હશે.
ત્રણ વિદ્યાર્થી $S_{1}, S_{2}$ અને $S_{3}$ એ સાદા લોલકની મદદથી ગુરુત્વપ્રવેગ $(g)$ માપવાનો પ્રયોગ કરે છે. તે જુદી જુદી લંબાઈના લોલક વડે જુદા જુદા દોલનોની સંખ્યા માટેનો સમય નોંધે છે. આ અવલોકનો નીચેના ટેબલમાં આપેલા છે.
વિદ્યાર્થીની સંખ્યા | લોલકની લંબાઈ $(cm)$ | દોલનોની સંખ્યા $(n)$ | દોલનો માટેનો કુલ સમય | આવર્તકાળ $(s)$ |
$1.$ | $64.0$ | $8$ | $128.0$ | $16.0$ |
$2.$ | $64.0$ | $4$ | $64.0$ | $16.0$ |
$3.$ | $20.0$ | $4$ | $36.0$ | $9.0$ |
(લંબાઇની લઘુતમ માપશક્તિ $=0.1 \,{m}$, સમયની લઘુતમ માપશક્તિ$=0.1\, {s}$ )
જો $E_{1}, E_{2}$ અને $E_{3}$ એ $g$ માં અનુક્રમે $1,2$ અને $3$ વિદ્યાર્થીની પ્રતિશત ત્રુટિ હોય, તો લઘુત્તમ પ્રતિશત ત્રુટિ કયા વિદ્યાર્થી દ્વારા મેળવાય હશે?
ગોળાની ત્રિજયા માપવામાં પ્રતિશત ત્રુટિ $1 \%$ હોય,તો કદમાં પ્રતિશત ત્રુટિ ......... $\%$ થશે.
સેકન્ડના લોલકના દોલનોનો સરેરાશ આવર્તકાળ $2.00$ સેકન્ડ છે અને આવર્તકાળની સરેરાશ ત્રુટિ $0.05$ સેકન્ડ છે. મહત્તમ ત્રુટિનું અંદાજિત મૂલ્ય મેળવવા માટે આવર્તકાળ કેટલો હોવો જોઇએ ?