मान लीजिए कि $R , Q$ से $Q$ में $R =\{(a, b): a, b \in Q$ तथा $a-b \in Z \} .$ द्वारा परिभाषित, एक संबंध है। सिद्ध कीजिए कि
$(a, a) \in R$ सभी $a \in Q$ के लिए
मान लीजिए कि $A =\{1,2,3, \ldots, 14\} \cdot R =\{(x, y): 3 x-y=0,$ जहाँ $x, y \in A \}$ द्वारा, $A$ से $A$ का एक संबंध $R$ लिखिए। इसके प्रांत, सहप्रांत और परिसर लिखिए।
$R =\{(x, x+5): x \in\{0,1,2,3,4,5\}\}$ द्वारा परिभाषित संबंध $R$ के प्रांत और परिसर ज्ञात कीजिए।
$A =\{1,2,3,5\}$ और $B =\{4,6,9\} . A$ से $B$ में एक संबंध $R =\{(x, y): x$ और $y$ का अंतर विषम है, $x \in A , y \in B \}$ द्वारा परिभाषित कीजिए। $R$ को रोस्टर रूप में लिखिए।
प्राकृत संख्याओं के समुच्चय पर $R =\{(x, y): y=x+5, x$ संख्या $4$ से कम, एक प्राकृत संख्या है, $x, y \in N \}$ द्वारा एक संबंध $R$ परिभाषित कीजिए। इस संबंध को $(i)$ रोस्टर रूप में इसके प्रांत और परिसर लिखिए।