Write the following sets in roster form :
$D = \{ x:x$ is a prime number which is divisor of $60\} $
$D = \{ x:x$ is a prime number which is divisor of $60\} $
$2$ | $60$ |
$2$ | $30$ |
$3$ | $15$ |
$5$ |
$\therefore 60=2 \times 2 \times 3 \times 5$
The elements of this set are $2,3$ and $5$ only.
Therefore, this set can be written in roster form as $D=\{2,3,5\}$
In the following state whether $A=B$ or not :
$A=\{a, b, c, d\} ; B=\{d, c, b, a\}$
Which of the following are examples of the null set
Set of even prime numbers
Let $A, B$ and $C$ be three sets. If $A \in B$ and $B \subset C$, is it true that $A$ $\subset$ $C$ ?. If not, give an example.
Let $S=\{1,2,3, \ldots, 40)$ and let $A$ be a subset of $S$ such that no two elements in $A$ have their sum divisible by 5 . What is the maximum number of elements possible in $A$ ?
List all the elements of the following sers :
$C = \{ x:x$ is an integer ${\rm{; }}{x^2} \le 4\} $