Let $S=\{1,2,3, \ldots, 40)$ and let $A$ be a subset of $S$ such that no two elements in $A$ have their sum divisible by 5 . What is the maximum number of elements possible in $A$ ?
Let $A=\{1,2,3,4,5,6\} .$ Insert the appropriate symbol $\in$ or $\notin$ in the blank spaces:
$ 4\, ......... \, A $
If $Q = \left\{ {x:x = {1 \over y},\,{\rm{where \,\,}}y \in N} \right\}$, then
In each of the following, determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.
If $A \subset B$ and $B \in C,$ then $A \in C$
Make correct statements by filling in the symbols $\subset$ or $ \not\subset $ in the blank spaces:
$\{ x:x$ is a student of class $\mathrm{XI}$ of your school $\} \ldots \{ x:x$ student of your school $\} $