If $Q = \left\{ {x:x = {1 \over y},\,{\rm{where \,\,}}y \in N} \right\}$, then
$0 \in Q$
$1 \in Q$
$2 \in Q$
${2 \over 3} \in Q$
Write the following intervals in set-builder form :
$\left[ { - 23,5} \right)$
Write the set $\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \frac{6}{7}\right\}$ in the set-builder form.
Make correct statements by filling in the symbols $\subset$ or $ \not\subset $ in the blank spaces:
$\{ x:x$ is a circlein the plane $\} \ldots \{ x:x$ is a circle in thesame plane with radius $1$ unit $\} $
Make correct statements by filling in the symbols $\subset$ or $ \not\subset $ in the blank spaces:
$\{ x:x$ is a triangle in a plane $\} \ldots \{ x:x$ is a rectangle in the plane $\} $
Let $A=\{1,2,3,4,5,6\} .$ Insert the appropriate symbol $\in$ or $\notin$ in the blank spaces:
$ 0\, ........\, A $