With the help of the remainder theorem, find the remainder when the polynomial $x^{3}+x^{2}-26 x+24$ is divided by each of the following divisors
$x+4$
$80$
$71$
$52$
$65$
If $x+1$ is a factor of $a x^{3}+x^{2}-2 x+4 a-9,$ find the value of $a$.
Check whether $p(x)$ is a multiple of $g(x)$ or not :
$p(x)=2 x^{3}-11 x^{2}-4 x+5, \quad g(x)=2 x+1$
Evaluate
$(1002)^{2}$
Verify whether the following are True or False:
$-3$ is a zero of $x-3$
Verify whether the following are True or False:
$-3$ is a zero of $y^{2}+y-6.$