Why Coulomb’s law is associated with Newton’s $3^{rd}$ law ?

Similar Questions

Two pith balls carrying equal charges are suspended from a common point by strings of equal length, the equilibrium separation between them is $r.$ Now the strings are rigidly clamped at half the height. The equilibrium separation between the balls now become

  • [AIPMT 2013]

A conducting sphere of radius $R$, and carrying a charge $q$ is joined to a conducting sphere of radius $2R$, and carrying a charge $-2q$. The charge flowing between them will be

Coulomb's law for electrostatic force between two point charges and Newton's law for gravitational force between two stationary point masses, both have inverse-square dependence on the distance between the charges and masses respectively.

$(a)$ Compare the strength of these forces by determining the ratio of their magnitudes $(i)$ for an electron and a proton and $(ii)$ for two protons.

$(b)$ Estimate the accelerations of electron and proton due to the electrical force of their mutual attraction when they are $1  \mathring A \left( { = {{10}^{ - 10}}m} \right)$ apart? $\left(m_{p}=1.67 \times 10^{-27} \,kg , m_{e}=9.11 \times 10^{-31}\, kg \right)$

Two charges, each equal to $q$, are kept at $x = -a$ and $x = a$ on the $x-$axis. A particle of mass $m$ and charge $q_0=\frac{q}{2}$ is placed at the origin. If charge $q_0$ is given a small displacement $(y < < a)$ along the $y-$axis, the net force acting on the particle is proportional to

  • [JEE MAIN 2013]

Two copper balls, each weighing $10\,g$ are kept in air $10\, cm$ apart. If one electron from every ${10^6}$ atoms is transferred from one ball to the other, the coulomb force between them is (atomic weight of copper is $63.5$)