Whose result the whole electrostatic is ?

Similar Questions

The linear charge density on upper half of a segment of ring is $\lambda$ and at lower half, it is $-\lambda$. The direction of electrical field at centre $O$ of ring is :-

A charged spherical drop of mercury is in equilibrium in a plane horizontal air capacitor and the intensity of the electric field is $6 × 10^4 $  $Vm^{-1}$. The charge on the drop is $8 × 10^{-18}$ $C$. The radius of the drop is $\left[ {{\rho _{air}} = 1.29\,kg/{m^3};{\rho _{Hg}} = 13.6 \times {{10}^3}kg/{m^3}} \right]$

In the following four situations charged particles are at equal distance from the origin. Arrange them the magnitude of the net electric field at origin greatest first

The electric field in a region is radially outward and at a point is given by $E=250 \,r V / m$ (where $r$ is the distance of the point from origin). Calculate the charge contained in a sphere of radius $20 \,cm$ centred at the origin ......... $C$

Two identical non-conducting solid spheres of same mass and charge are suspended in air from a common point by two non-conducting, massless strings of same length. At equilibrium, the angle between the strings is $\alpha$. The spheres are now immersed in a dielectric liquid of density $800 kg m ^{-3}$ and dielectric constant $21$ . If the angle between the strings remains the same after the immersion, then

$(A)$ electric force between the spheres remains unchanged

$(B)$ electric force between the spheres reduces

$(C)$ mass density of the spheres is $840 kg m ^{-3}$

$(D)$ the tension in the strings holding the spheres remains unchanged

  • [IIT 2020]