Which of the following statement is false (where $A$ $\&$ $B$ are two non empty sets)

  • A

    $A - B = A \cap B'$

  • B

    $A - B = A - (A \cap B)$

  • C

    $A - B = A - B'$

  • D

    $A - B = (A \cup B) - B$

Similar Questions

If $U =\{1,2,3,4,5,6,7,8,9\}, A =\{2,4,6,8\}$ and $B =\{2,3,5,7\} .$ Verify that

$(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$

If $U=\{a, b, c, d, e, f, g, h\},$ find the complements of the following sets:

$B=\{d, e, f, g\}$

Let $U=\{1,2,3,4,5,6\}, A=\{2,3\}$ and $B=\{3,4,5\}$

Find $A^{\prime}, B^{\prime}, A^{\prime} \cap B^{\prime}, A \cup B$ and hence show that $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$

Fill in the blanks to make each of the following a true statement :

$\varnothing^ {\prime}\cap A$

Draw appropriate Venn diagram for each of the following:

$A^{\prime} \cap B^{\prime}$