If the sets $A$ and $B$ are defined as $A = \{ (x,\,y):y = {e^x},\,x \in R\} $; $B = \{ (x,\,y):y = x,\,x \in R\} ,$ then
If $A=\{1,2,3,4\}, B=\{3,4,5,6\}, C=\{5,6,7,8\}$ and $D=\{7,8,9,10\} ;$ find
$A \cup B$
Given the sets $A = \{ 1,\,2,\,3\} ,\,B = \{ 3,4\} , C = \{4, 5, 6\}$, then $A \cup (B \cap C)$ is
If $A, B, C$ be three sets such that $A \cup B = A \cup C$ and $A \cap B = A \cap C$, then
If $A =$ [$x:x$ is a multiple of $3$] and $B =$ [$x:x$ is a multiple of $5$], then $A -B$ is ($\bar A$ means complement of $A$)