If $A =$ [$x:x$ is a multiple of $3$] and $B =$ [$x:x$ is a multiple of $5$], then $A -B$ is ($\bar A$ means complement of $A$)
$\bar A \cap B$
$A \cap \bar B$
$\bar A \cap \bar B$
$\overline {A \cap B} $
Consider the sets $X$ and $Y$ of $X = \{ $ Ram , Geeta, Akbar $\} $ and $Y = \{ $ Geeta, David, Ashok $\} $ Find $X \cap Y$
Find the union of each of the following pairs of sets :
$A=\{a, e, i, o, u\} B=\{a, b, c\}$
If $A=\{1,2,3,4\}, B=\{3,4,5,6\}, C=\{5,6,7,8\}$ and $D=\{7,8,9,10\} ;$ find
$B \cup C$
If $A=\{1,2,3,4\}, B=\{3,4,5,6\}, C=\{5,6,7,8\}$ and $D=\{7,8,9,10\} ;$ find
$A \cup C$
Using that for any sets $\mathrm{A}$ and $\mathrm{B},$
$A \cup(A \cap B)=A$