समुच्चय $\left\{x: x\right.$ एक धन पूर्णांक है और $\left.x^{2}<40\right\}$ को रोस्टर रूप में लिखिए।
मान लीजिए कि $A =\{1,2,\{3,4\}, 5\}$ । निम्नलिखित में से कौन सा कथन सही नहीं है और क्यों ?
$1 \subset A$
बाईं ओर रोस्टर रूप में वर्णित प्रत्येक समुच्चय का दाईं ओर समुच्चय निर्माण रूप में वर्णित समुच्चय से सही मिलान कीजिए :
$(i)$ $\{ P,R,I,N,C,A,L\} $ | $(a)$ $\{x: x$ एक धन पूर्णांक है तथा 18 का भाजक है $\}$ |
$(ii)$ $\{ \,0\,\} $ | $(b)$ $\left\{x: x\right.$ एक पूर्णांक है और $\left.x^{2}-9=0\right\}$ |
$(iii)$ $\{ 1,2,3,6,9,18\} $ | $(c)$ $\{x: x$ एक पूर्णांक है और $x+1=1\}$ |
$(iv)$ $\{ 3, - 3\} $ | $(d)$ $\{x: x$ शब्द $PRINCIPAL$ का एक अक्षर है $\}$ |
यदि $A = \{ \phi ,\,\{ \phi \} \} ,$ तब समुच्चय $ A $ का घात समुच्चय है
ज्ञात कीजिए कि निम्नलिखित में से प्रत्येक कथन सत्य है या असत्य है। यदि सत्य है, तो उसे सिद्ध कीजिए। यदि असत्य है, तो एक उदाहरण दीजिए।
यदि $x \in A$ तथा $A \not \subset B ,$ तो $x \in B$