Which law is useful to determine relation between current and magnetic fields due to it.

Similar Questions

The magnetic force acting on a charged particle of charge $-2\, \mu  C$ in a magnetic field of $2\, T$ acting in $y$ direction, when the particle velocity is $(2i + 3 j) \times  10^6\,\, m/s$ is

  • [AIPMT 2009]

If a proton, deutron and $\alpha - $ particle on being accelerated by the same potential difference enters perpendicular to the magnetic field, then the ratio of their kinetic energies is

An electron is projected with velocity $\vec v$ in a uniform magnetic field $\vec B$ . The angle $\theta$  between $\vec v$ and $\vec B$  lines between $0^o$ and $\frac{\pi}{2}$ . It velocity $\vec v$ vector returns to its initial  value in time interval of 

A proton (mass $ = 1.67 \times {10^{ - 27}}\,kg$ and charge $ = 1.6 \times {10^{ - 19}}\,C)$ enters perpendicular to a magnetic field of intensity $2$ $weber/{m^2}$ with a velocity $3.4 \times {10^7}\,m/\sec $. The acceleration of the proton should be

Two ions having masses in the ratio $1 : 1$ and charges $1 : 2$ are projected into uniform magnetic field perpendicular to the field with speeds in the ratio $2 : 3$. The ratio of the radii of circular paths along which the two particles move is