When vector $\overrightarrow{ A }=2 \hat{ i }+3 \hat{ j }+2 \hat{ k }$ is subtracted from vector $\vec{B}$, it gives a vector equal to $2 \hat{j}$. Then the magnitude of vector $\vec{B}$ will be:

  • [JEE MAIN 2023]
  • A

    $\sqrt{13}$

  • B

    $\sqrt{33}$

  • C

    $\sqrt{6}$

  • D

    $\sqrt{5}$

Similar Questions

Statement $I:$ If three forces $\vec{F}_{1}, \vec{F}_{2}$ and $\vec{F}_{3}$ are represented by three sides of a triangle and $\overrightarrow{{F}}_{1}+\overrightarrow{{F}}_{2}=-\overrightarrow{{F}}_{3}$, then these three forces are concurrent forces and satisfy the condition for equilibrium.

Statement $II:$ A triangle made up of three forces $\overrightarrow{{F}}_{1}, \overrightarrow{{F}}_{2}$ and $\overrightarrow{{F}}_{3}$ as its sides taken in the same order, satisfy the condition for translatory equilibrium.

In the light of the above statements, choose the most appropriate answer from the options given below:

  • [JEE MAIN 2021]

A body moves due East with velocity $20\, km/hour$ and then due North with velocity $15 \,km/hour$. The resultant velocity..........$km/hour$

Two vectors $A$ and $B$ inclined at angle $\theta$ have a resultant $R$ which makes an angle $\phi$ with $A$. If the directions of $A$ and B are interchanged and resultant will have the same

If $A$ and $B$ are two non-zero vectors having equal magnitude, the angle between the vectors $A$ and $A - B$ is

The vector that must be added to the vector $\hat i - 3\hat j + 2\hat k$ and $3\hat i + 6\hat j - 7\hat k$ so that the resultant vector is a unit vector along the $y-$axis is