What will be the equation of that chord of ellipse $\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{9} = 1$ which passes from the point $(2,1)$ and bisected on the point

  • A

    $x + y = 2$

  • B

    $x + y = 3$

  • C

    $x + 2y = 1$

  • D

    $x + 2y + 4$

Similar Questions

The locus of the point of intersection of mutually perpendicular tangent to the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$, is

The equation of the ellipse referred to its axes as the axes of coordinates with latus rectum of length $4$ and distance between foci $4 \sqrt 2$ is-

The equation of the tangents drawn at the ends of the major axis of the ellipse $9{x^2} + 5{y^2} - 30y = 0$, are

If tangents are drawn to the ellipse $x^2 + 2y^2 = 2$ at all points on the ellipse other than its four vertices than the mid points of the tangents intercepted between the coordinate axes lie on the curve

  • [JEE MAIN 2019]

Let $S = 0$ is an ellipse whose vartices are the extremities of minor axis of the ellipse $E:\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1,a > b$ If $S = 0$ passes through the foci of $E$ , then its eccentricity is (considering the eccentricity of $E$ as $e$ )