What is the number of ways of choosing $4$ cards from a pack of $52$ playing cards? In how many of these

cards are of the same colour?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

There will be as many ways of choosing $4$ cards from $52$ cards as there are combinations of $52$ different things, taken $4$ at a time. Therefore

The required number of ways $=\,^{52} C _{4}=\frac{52 !}{4 ! 48 !}=\frac{49 \times 50 \times 51 \times 52}{2 \times 3 \times 4}$

$=270725$

$4$ red cards can be selected out of $26$ red cards in $^{26} C _{4}$ ways.

$4$ black cards can be selected out of $26$ black cards in $^{26} C _{4}$ ways.

Therefore, the required number of ways $=\,^{26} C _{4}+^{26} C _{4}$

$=2 \times \frac{26 !}{4 ! 22 !}=29900$

Similar Questions

The value of ${}^{50}{C_4} + \sum\limits_{r = 1}^6 {^{56 - r}{C_3}} $ is

  • [AIEEE 2005]

If all the six digit numbers $x_1 x_2 x_3 x_4 x_5 x_6$ with $0 < x_1 < x_2 < x_3 < x_4 < x_5 < x_6$ are arranged in the increasing order, then the sum of the digits in the $72^{\text {th }}$ number is $............$.

  • [JEE MAIN 2023]

For non-negative integers $s$ and $r$, let

$\binom{s}{r}=\left\{\begin{array}{ll}\frac{s!}{r!(s-r)!} & \text { if } r \leq s \\ 0 & \text { if } r>s\end{array}\right.$

For positive integers $m$ and $n$, let

$(m, n) \sum_{ p =0}^{ m + n } \frac{ f ( m , n , p )}{\binom{ n + p }{ p }}$

where for any nonnegative integer $p$,

$f(m, n, p)=\sum_{i=0}^{ p }\binom{m}{i}\binom{n+i}{p}\binom{p+n}{p-i}$

Then which of the following statements is/are $TRUE$?

$(A)$ $(m, n)=g(n, m)$ for all positive integers $m, n$

$(B)$ $(m, n+1)=g(m+1, n)$ for all positive integers $m, n$

$(C)$ $(2 m, 2 n)=2 g(m, n)$ for all positive integers $m, n$

$(D)$ $(2 m, 2 n)=(g(m, n))^2$ for all positive integers $m, n$

  • [IIT 2020]

If $^{n}{P_4} = 24.{\,^n}{C_5},$ then the value of $n$ is

The least value of a natural number $n$ such that $\left(\frac{n-1}{5}\right)+\left(\frac{n-1}{6}\right) < \left(\frac{n}{7}\right)$, where $\left(\frac{n}{r}\right)=\frac{n !}{(n-r) ! r !}, i$

  • [KVPY 2017]