Find unit vector perpendicular to $\vec A$ and $\vec B$ where $\vec A = \hat i - 2\hat j + \hat k$ and $\vec B = \hat i + 2\hat j$

  • A
    $\frac{{2\hat i + \hat j + 4\hat k}}{{\sqrt {21} }}$
  • B
    $\frac{{ - 2\hat i + \hat j + 4\hat k}}{{\sqrt {21} }}$
  • C
    $\frac{{ - 2\hat i - \hat j + 4\hat k}}{{\sqrt {21} }}$
  • D
    $\frac{{2\hat i + \hat j + 4\hat k}}{{\sqrt 5 }}$

Similar Questions

If for two vectors $\overrightarrow A $ and $\overrightarrow B ,\overrightarrow A \times \overrightarrow B = 0,$ the vectors

What is the unit vector perpendicular to the following vectors $2\hat i + 2\hat j - \hat k$ and $6\hat i - 3\hat j + 2\hat k$

A vector ${\overrightarrow F _1}$is along the positive $X-$axis. If its vector product with another vector ${\overrightarrow F _2}$ is zero then ${\overrightarrow F _2}$ could be

If $\theta$ is the angle between two vectors $A$ and $B$, then match the following two columns.
colum $I$ colum $II$
$(A)$ $A \cdot B =| A \times B |$ $(p)$ $\theta=90^{\circ}$
$(B)$ $A \cdot B = B ^2$ $(q)$ $\theta=0^{\circ}$ or $180^{\circ}$
$(C)$ $|A+B|=|A-B|$ $(r)$ $A=B$
$(D)$ $|A \times B|=A B$ $(s)$ None

Find the angle between two vectors with the help of scalar product.