If for two vectors $\overrightarrow A $ and $\overrightarrow B ,\overrightarrow A \times \overrightarrow B = 0,$ the vectors
What is the unit vector perpendicular to the following vectors $2\hat i + 2\hat j - \hat k$ and $6\hat i - 3\hat j + 2\hat k$
A vector ${\overrightarrow F _1}$is along the positive $X-$axis. If its vector product with another vector ${\overrightarrow F _2}$ is zero then ${\overrightarrow F _2}$ could be
colum $I$ | colum $II$ |
$(A)$ $A \cdot B =| A \times B |$ | $(p)$ $\theta=90^{\circ}$ |
$(B)$ $A \cdot B = B ^2$ | $(q)$ $\theta=0^{\circ}$ or $180^{\circ}$ |
$(C)$ $|A+B|=|A-B|$ | $(r)$ $A=B$ |
$(D)$ $|A \times B|=A B$ | $(s)$ None |
Find the angle between two vectors with the help of scalar product.