Obtain the relation between the units of some physical quantity in two different systems of units. Obtain the relation between the $MKS$ and $CGS$ unit of work.

Vedclass pdf generator app on play store
Vedclass iOS app on app store
The unit of work in $MKS$ system is Joule and that in $CGS$ system is erg. The relation between Joule and erg can be obtained as follows.
Dimensional formula for work, $\mathrm{W}=\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}$
in $MKS$ system = in $CGS$ system
$ \mathrm{M}(\mathrm{kg})=10^{3} \mathrm{M}(\mathrm{gm}) $
$ \mathrm{L}(\mathrm{m}) =10^{2} \mathrm{~L}(\mathrm{~cm}) $
$\mathrm{T}(\mathrm{s}) =10^{0} \mathrm{~T}(\mathrm{~s}) $
$ \mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2} =\left(10^{3} \mathrm{M}\right)^{1}(10^{2} \mathrm{~L})^{2}\left(10^{0} \mathrm{~T}\right)^{-2}$
$ =10^{3} \times 10^{4} \mathrm{M}^{1} \mathrm{~L}^{2}\mathrm{~T}^{-2}$
$ =10^{7} \mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}$
So, $MKS$ unit of work $=10^{7}$ CGS unit of work $\therefore 1 \mathrm{~J}=10^{7} \mathrm{erg}$

Similar Questions

In a particular system of units, a physical quantity can be expressed in terms of the electric charge $c$, electron mass $m_c$, Planck's constant $h$, and Coulomb's constant $k=\frac{1}{4 \pi \epsilon_0}$, where $\epsilon_0$ is the permittivity of vacuum. In terms of these physical constants, the dimension of the magnetic field is $[B]=[c]^\alpha\left[m_c\right]^\beta[h]^\gamma[k]^\delta$. The value of $\alpha+\beta+\gamma+\delta$ is. . . . .

  • [IIT 2022]

Match List $I$ with List $II$ and select the correct answer using the codes given below the lists :

List $I$ List $II$
$P.$ Boltzmann constant $1.$ $\left[ ML ^2 T ^{-1}\right]$
$Q.$ Coefficient of viscosity $2.$ $\left[ ML ^{-1} T ^{-1}\right]$
$R.$ Planck constant $3.$ $\left[ MLT ^{-3} K ^{-1}\right]$
$S.$ Thermal conductivity $4.$ $\left[ ML ^2 T ^{-2} K ^{-1}\right]$

Codes: $ \quad \quad P \quad Q \quad R \quad S $ 

  • [IIT 2013]

The dimension of the ratio of magnetic flux and the resistance is equal to that of :

If orbital velocity of planet is given by $v = {G^a}{M^b}{R^c}$, then

Pressure exerted by a gas is found to be $50\, N/m^2$ , then the value of pressure in $CGS$ system is