Unit vector parallel to the resultant of vectors $\vec A = 4\hat i - 3\hat j$and $\vec B = 8\hat i + 8\hat j$ will be
$\frac{{24\hat i + 5\hat j}}{{13}}$
$\frac{{12\hat i + 5\hat j}}{{13}}$
$\frac{{6\hat i + 5\hat j}}{{13}}$
None of these
Which of the following quantity/quantities are dependent on the choice of orientation of the co-ordinate axes?
$(a)$ $\vec{a}+\vec{b}$
$(b)$ $3 a_x+2 b_y$
$(c)$ $(\vec{a}+\vec{b}-\vec{c})$
The angle between vector $\vec{Q}$ and the resultant of $(2 \overrightarrow{\mathrm{Q}}+2 \overrightarrow{\mathrm{P}})$ and $(2 \overrightarrow{\mathrm{Q}}-2 \overrightarrow{\mathrm{P}})$ is:
The ratio of maximum and minimum magnitudes of the resultant of two vector $\vec a$ and $\vec b$ is $3 : 1$. Now $| \vec a |$ is equal to
Three forces given by vectors $2 \hat{i}+2 \hat{j}, 2 \hat{i}-2 \hat{j}$ and $-4 \hat{i}$ are acting together on a point object at rest. The object moves along the direction