The angle between vector $\vec{Q}$ and the resultant of $(2 \overrightarrow{\mathrm{Q}}+2 \overrightarrow{\mathrm{P}})$ and $(2 \overrightarrow{\mathrm{Q}}-2 \overrightarrow{\mathrm{P}})$ is:

  • [JEE MAIN 2024]
  • A

    $0^{\circ}$

  • B

    $\tan ^{-1} \frac{(2 \overrightarrow{\mathrm{Q}}-2 \overrightarrow{\mathrm{P}})}{2 \overrightarrow{\mathrm{Q}}+2 \overrightarrow{\mathrm{P}}}$

  • C

    $\tan ^{-1}\left(\frac{P}{Q}\right)$

  • D

    $\tan ^{-1}\left(\frac{2 Q}{P}\right)$

Similar Questions

If $\overrightarrow A = 4\hat i - 3\hat j$ and $\overrightarrow B = 6\hat i + 8\hat j$ then magnitude and direction of $\overrightarrow A \, + \overrightarrow B $ will be

If $\overrightarrow R$ is the resultant vector of two vectors $\overrightarrow A $ and $\overrightarrow B $, then  $\overrightarrow {\left| R \right|} \,...\,\overrightarrow {\left| A \right|} \, + \,\overrightarrow {\left| B \right|} $.

The angle between vector $(\overrightarrow{{A}})$ and $(\overrightarrow{{A}}-\overrightarrow{{B}})$ is :

  • [JEE MAIN 2021]

Forces ${F_1}$ and ${F_2}$ act on a point mass in two mutually perpendicular directions. The resultant force on the point mass will be

A vector $\vec A $ is rotated by a small angle $\Delta \theta$ radian $( \Delta \theta << 1)$ to get a new vector $\vec B$ In that case $\left| {\vec B - \vec A} \right|$ is

  • [JEE MAIN 2015]