A conducting sphere of radius $r$ has a charge. Then
The charge is uniformly distributed over its surface, if there is an external electric field.
Distribution of charge over its surface will be non uniform if no external electric field exist in space.
Electric field strength inside the sphere will be equal to zero only when no external electric field exists
Potential at every point of the sphere must be same
The magnitude of electric field on the surface of a uniformly charged metalic spherical shell is $E$. If a hole is made in it using a insulating device, then the magnitude of electric field in the hole will be
Two concentric spheres $A$ and $B$ are kept very near to each other. $A$ is negatively charged and $B$ is earthed. The true statement is
$(A)$ Charge on $B$ is zero
$(B)$ Potential at $B$ is zero
$(C)$ Charge is uniformly distributed on $A$
$(D)$ Charge is non uniformly distributed on $A$
Two spherical conductors $A$ and $B$ of radii $1\ mm$ and $2\ mm$ are separated by a distance of $5\ cm$ and are uniformly charged. If the spheres are connected by a conducting wire then in equilibrium condition, the ratio of the magnitude of the electric fields at the surfaces of spheres $A$ and $B$ is
As shown in the figure, a point charge $Q$ is placed at the centre of conducting spherical shell of inner radius a and outer radius $b$. The electric field due to charge $Q$ in three different regions I, II and III is given by: $( I : r < a , II : a < r < b , III : r > b )$
Two thin conducting shells of radii $R$ and $3R$ are shown in the figure. The outer shell carries a charge $+ Q$ and the inner shell is neutral. The inner shell is earthed with the help of a switch $S$.