Two sets $A$ and $B$ are as under:

$A = \{ \left( {a,b} \right) \in R \times R:\left| {a - 5} \right| < 1 \,\,and\,\,\left| {b - 5} \right| < 1\} $; $B = \left\{ {\left( {a,b} \right) \in R \times R:4{{\left( {a - 6} \right)}^2} + 9{{\left( {b - 5} \right)}^2} \le 36} \right\}$ then : . . . . .

  • [JEE MAIN 2018]
  • A

    $A \subset B$

  • B

    $A \cap B = \emptyset $

  • C

    neither $A \subset B$ nor $B \subset A$ 

  • D

    $B \subset A$

Similar Questions

Eccentricity of the ellipse whose latus rectum is equal to the distance between two focus points, is

Extremities of the latera recta of the ellipses $\frac{{{x^2}}}{{{a^2}}}\,\, + \,\,\frac{{{y^2}}}{{{b^2}}}\, = \,1\,$ $(a > b)$  having a given major axis $2a$  lies on

Statement $-1$ : If two tangents are drawn to an ellipse from a single point and if they are perpendicular to each other, then locus of that point is always a circle 

Statement $-2$ : For an ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ , locus of that point from which two perpendicular tangents are drawn, is $x^2 + y^2 = (a + b)^2$ .

An ellipse has eccentricity $\frac{1}{2}$ and one focus at the point $P\left( {\frac{1}{2},\;1} \right)$. Its one directrix is the common tangent nearer to the point $P$, to the circle ${x^2} + {y^2} = 1$ and the hyperbola ${x^2} - {y^2} = 1$. The equation of the ellipse in the standard form, is

  • [IIT 1996]

A vertical line passing through the point $(h, 0)$ intersects the ellipse $\frac{x^2}{4}+\frac{y^2}{3}=1$ at the points $P$ and $Q$. Let the tangents to the ellipse at $P$ and $Q$ meet at the point $R$. If $\Delta(h)=$ area of the triangle $P Q R, \Delta_1=\max _{1 / 2 \leq h \leq 1} \Delta(h)$ and $\Delta_2=\min _{1 / 2 \leq h \leq 1} \Delta(h)$, then $\frac{8}{\sqrt{5}} \Delta_1-8 \Delta_2=$

  • [IIT 2013]